Sharp entropy bounds for discrete statistical simulation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp entropy bounds for discrete statistical simulation

We de ne a general procedure for simulating a given discrete distribution using a sequence of i.i.d. random variables. This procedure is used to prove that a natural information-theoretic bound on the number of samples required to simulate the distribution can be arbitrarily approached in a limiting sense. c © 1999 Elsevier Science B.V. All rights reserved

متن کامل

Entropy Bounds and Statistical Tests

We convert a generic class of entropy tests from pass/fail to a measure of entropy. The conversion enables one to specify a fundamental design criterion: state the number of outputs from a noise source required to satisfy a security threshold. We define new entropy measurements based on a three-step strategy: 1) compute a statistic on raw output of a noise source, 2) define a set of probability...

متن کامل

Sharp Bounds on the PI Spectral Radius

In this paper some upper and lower bounds for the greatest eigenvalues of the PI and vertex PI matrices of a graph G are obtained. Those graphs for which these bounds are best possible are characterized.

متن کامل

Sharp bounds for harmonic numbers

In the paper, we collect some inequalities and establish a sharp double inequality for bounding the n-th harmonic number.

متن کامل

Sharp bounds for population recovery

The population recovery problem is a basic problem in noisy unsupervised learning that has attracted significant research attention in recent years [WY12, DRWY12, MS13, BIMP13, LZ15, DST16]. A number of different variants of this problem have been studied, often under assumptions on the unknown distribution (such as that it has restricted support size). In this work we study the sample complexi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics & Probability Letters

سال: 1999

ISSN: 0167-7152

DOI: 10.1016/s0167-7152(98)00174-6